Copied to
clipboard

G = C62.223C23order 288 = 25·32

68th non-split extension by C62 of C23 acting via C23/C22=C2

metabelian, supersoluble, monomial

Aliases: C62.223C23, (C2×C12).205D6, (C22×C6).85D6, C6.97(C4○D12), C12⋊Dic36C2, C625C4.6C2, (C6×C12).11C22, C6.93(D42S3), C6.Dic619C2, C36(C23.8D6), (C2×C62).62C22, C3211(C422C2), C2.9(C12.59D6), C2.7(C12.D6), C23.8(C2×C3⋊S3), (C4×C3⋊Dic3)⋊21C2, C22⋊C4.2(C3⋊S3), (C3×C22⋊C4).10S3, (C3×C6).113(C4○D4), (C2×C6).240(C22×S3), (C32×C22⋊C4).2C2, C22.40(C22×C3⋊S3), (C2×C3⋊Dic3).154C22, (C2×C4).26(C2×C3⋊S3), SmallGroup(288,736)

Series: Derived Chief Lower central Upper central

C1C62 — C62.223C23
C1C3C32C3×C6C62C2×C3⋊Dic3C4×C3⋊Dic3 — C62.223C23
C32C62 — C62.223C23
C1C22C22⋊C4

Generators and relations for C62.223C23
 G = < a,b,c,d,e | a6=b6=e2=1, c2=b3, d2=a3, ab=ba, cac-1=a-1, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ece=a3b3c, ede=b3d >

Subgroups: 556 in 180 conjugacy classes, 65 normal (29 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C2×C4, C2×C4, C23, C32, Dic3, C12, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C3×C6, C3×C6, C2×Dic3, C2×C12, C22×C6, C422C2, C3⋊Dic3, C3×C12, C62, C62, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C6.D4, C3×C22⋊C4, C2×C3⋊Dic3, C6×C12, C2×C62, C23.8D6, C4×C3⋊Dic3, C6.Dic6, C12⋊Dic3, C625C4, C32×C22⋊C4, C62.223C23
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C3⋊S3, C22×S3, C422C2, C2×C3⋊S3, C4○D12, D42S3, C22×C3⋊S3, C23.8D6, C12.59D6, C12.D6, C62.223C23

Smallest permutation representation of C62.223C23
On 144 points
Generators in S144
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 32 58 16 39 61)(2 33 59 17 40 62)(3 34 60 18 41 63)(4 35 55 13 42 64)(5 36 56 14 37 65)(6 31 57 15 38 66)(7 29 138 125 24 142)(8 30 133 126 19 143)(9 25 134 121 20 144)(10 26 135 122 21 139)(11 27 136 123 22 140)(12 28 137 124 23 141)(43 71 77 53 94 82)(44 72 78 54 95 83)(45 67 73 49 96 84)(46 68 74 50 91 79)(47 69 75 51 92 80)(48 70 76 52 93 81)(85 118 108 128 111 98)(86 119 103 129 112 99)(87 120 104 130 113 100)(88 115 105 131 114 101)(89 116 106 132 109 102)(90 117 107 127 110 97)
(1 129 16 86)(2 128 17 85)(3 127 18 90)(4 132 13 89)(5 131 14 88)(6 130 15 87)(7 53 125 43)(8 52 126 48)(9 51 121 47)(10 50 122 46)(11 49 123 45)(12 54 124 44)(19 81 30 76)(20 80 25 75)(21 79 26 74)(22 84 27 73)(23 83 28 78)(24 82 29 77)(31 104 38 100)(32 103 39 99)(33 108 40 98)(34 107 41 97)(35 106 42 102)(36 105 37 101)(55 116 64 109)(56 115 65 114)(57 120 66 113)(58 119 61 112)(59 118 62 111)(60 117 63 110)(67 140 96 136)(68 139 91 135)(69 144 92 134)(70 143 93 133)(71 142 94 138)(72 141 95 137)
(1 43 4 46)(2 44 5 47)(3 45 6 48)(7 132 10 129)(8 127 11 130)(9 128 12 131)(13 50 16 53)(14 51 17 54)(15 52 18 49)(19 117 22 120)(20 118 23 115)(21 119 24 116)(25 111 28 114)(26 112 29 109)(27 113 30 110)(31 70 34 67)(32 71 35 68)(33 72 36 69)(37 92 40 95)(38 93 41 96)(39 94 42 91)(55 74 58 77)(56 75 59 78)(57 76 60 73)(61 82 64 79)(62 83 65 80)(63 84 66 81)(85 124 88 121)(86 125 89 122)(87 126 90 123)(97 136 100 133)(98 137 101 134)(99 138 102 135)(103 142 106 139)(104 143 107 140)(105 144 108 141)
(7 10)(8 11)(9 12)(19 22)(20 23)(21 24)(25 28)(26 29)(27 30)(43 53)(44 54)(45 49)(46 50)(47 51)(48 52)(67 96)(68 91)(69 92)(70 93)(71 94)(72 95)(73 84)(74 79)(75 80)(76 81)(77 82)(78 83)(85 131)(86 132)(87 127)(88 128)(89 129)(90 130)(97 104)(98 105)(99 106)(100 107)(101 108)(102 103)(109 119)(110 120)(111 115)(112 116)(113 117)(114 118)(121 124)(122 125)(123 126)(133 136)(134 137)(135 138)(139 142)(140 143)(141 144)

G:=sub<Sym(144)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,32,58,16,39,61)(2,33,59,17,40,62)(3,34,60,18,41,63)(4,35,55,13,42,64)(5,36,56,14,37,65)(6,31,57,15,38,66)(7,29,138,125,24,142)(8,30,133,126,19,143)(9,25,134,121,20,144)(10,26,135,122,21,139)(11,27,136,123,22,140)(12,28,137,124,23,141)(43,71,77,53,94,82)(44,72,78,54,95,83)(45,67,73,49,96,84)(46,68,74,50,91,79)(47,69,75,51,92,80)(48,70,76,52,93,81)(85,118,108,128,111,98)(86,119,103,129,112,99)(87,120,104,130,113,100)(88,115,105,131,114,101)(89,116,106,132,109,102)(90,117,107,127,110,97), (1,129,16,86)(2,128,17,85)(3,127,18,90)(4,132,13,89)(5,131,14,88)(6,130,15,87)(7,53,125,43)(8,52,126,48)(9,51,121,47)(10,50,122,46)(11,49,123,45)(12,54,124,44)(19,81,30,76)(20,80,25,75)(21,79,26,74)(22,84,27,73)(23,83,28,78)(24,82,29,77)(31,104,38,100)(32,103,39,99)(33,108,40,98)(34,107,41,97)(35,106,42,102)(36,105,37,101)(55,116,64,109)(56,115,65,114)(57,120,66,113)(58,119,61,112)(59,118,62,111)(60,117,63,110)(67,140,96,136)(68,139,91,135)(69,144,92,134)(70,143,93,133)(71,142,94,138)(72,141,95,137), (1,43,4,46)(2,44,5,47)(3,45,6,48)(7,132,10,129)(8,127,11,130)(9,128,12,131)(13,50,16,53)(14,51,17,54)(15,52,18,49)(19,117,22,120)(20,118,23,115)(21,119,24,116)(25,111,28,114)(26,112,29,109)(27,113,30,110)(31,70,34,67)(32,71,35,68)(33,72,36,69)(37,92,40,95)(38,93,41,96)(39,94,42,91)(55,74,58,77)(56,75,59,78)(57,76,60,73)(61,82,64,79)(62,83,65,80)(63,84,66,81)(85,124,88,121)(86,125,89,122)(87,126,90,123)(97,136,100,133)(98,137,101,134)(99,138,102,135)(103,142,106,139)(104,143,107,140)(105,144,108,141), (7,10)(8,11)(9,12)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30)(43,53)(44,54)(45,49)(46,50)(47,51)(48,52)(67,96)(68,91)(69,92)(70,93)(71,94)(72,95)(73,84)(74,79)(75,80)(76,81)(77,82)(78,83)(85,131)(86,132)(87,127)(88,128)(89,129)(90,130)(97,104)(98,105)(99,106)(100,107)(101,108)(102,103)(109,119)(110,120)(111,115)(112,116)(113,117)(114,118)(121,124)(122,125)(123,126)(133,136)(134,137)(135,138)(139,142)(140,143)(141,144)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,32,58,16,39,61)(2,33,59,17,40,62)(3,34,60,18,41,63)(4,35,55,13,42,64)(5,36,56,14,37,65)(6,31,57,15,38,66)(7,29,138,125,24,142)(8,30,133,126,19,143)(9,25,134,121,20,144)(10,26,135,122,21,139)(11,27,136,123,22,140)(12,28,137,124,23,141)(43,71,77,53,94,82)(44,72,78,54,95,83)(45,67,73,49,96,84)(46,68,74,50,91,79)(47,69,75,51,92,80)(48,70,76,52,93,81)(85,118,108,128,111,98)(86,119,103,129,112,99)(87,120,104,130,113,100)(88,115,105,131,114,101)(89,116,106,132,109,102)(90,117,107,127,110,97), (1,129,16,86)(2,128,17,85)(3,127,18,90)(4,132,13,89)(5,131,14,88)(6,130,15,87)(7,53,125,43)(8,52,126,48)(9,51,121,47)(10,50,122,46)(11,49,123,45)(12,54,124,44)(19,81,30,76)(20,80,25,75)(21,79,26,74)(22,84,27,73)(23,83,28,78)(24,82,29,77)(31,104,38,100)(32,103,39,99)(33,108,40,98)(34,107,41,97)(35,106,42,102)(36,105,37,101)(55,116,64,109)(56,115,65,114)(57,120,66,113)(58,119,61,112)(59,118,62,111)(60,117,63,110)(67,140,96,136)(68,139,91,135)(69,144,92,134)(70,143,93,133)(71,142,94,138)(72,141,95,137), (1,43,4,46)(2,44,5,47)(3,45,6,48)(7,132,10,129)(8,127,11,130)(9,128,12,131)(13,50,16,53)(14,51,17,54)(15,52,18,49)(19,117,22,120)(20,118,23,115)(21,119,24,116)(25,111,28,114)(26,112,29,109)(27,113,30,110)(31,70,34,67)(32,71,35,68)(33,72,36,69)(37,92,40,95)(38,93,41,96)(39,94,42,91)(55,74,58,77)(56,75,59,78)(57,76,60,73)(61,82,64,79)(62,83,65,80)(63,84,66,81)(85,124,88,121)(86,125,89,122)(87,126,90,123)(97,136,100,133)(98,137,101,134)(99,138,102,135)(103,142,106,139)(104,143,107,140)(105,144,108,141), (7,10)(8,11)(9,12)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30)(43,53)(44,54)(45,49)(46,50)(47,51)(48,52)(67,96)(68,91)(69,92)(70,93)(71,94)(72,95)(73,84)(74,79)(75,80)(76,81)(77,82)(78,83)(85,131)(86,132)(87,127)(88,128)(89,129)(90,130)(97,104)(98,105)(99,106)(100,107)(101,108)(102,103)(109,119)(110,120)(111,115)(112,116)(113,117)(114,118)(121,124)(122,125)(123,126)(133,136)(134,137)(135,138)(139,142)(140,143)(141,144) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,32,58,16,39,61),(2,33,59,17,40,62),(3,34,60,18,41,63),(4,35,55,13,42,64),(5,36,56,14,37,65),(6,31,57,15,38,66),(7,29,138,125,24,142),(8,30,133,126,19,143),(9,25,134,121,20,144),(10,26,135,122,21,139),(11,27,136,123,22,140),(12,28,137,124,23,141),(43,71,77,53,94,82),(44,72,78,54,95,83),(45,67,73,49,96,84),(46,68,74,50,91,79),(47,69,75,51,92,80),(48,70,76,52,93,81),(85,118,108,128,111,98),(86,119,103,129,112,99),(87,120,104,130,113,100),(88,115,105,131,114,101),(89,116,106,132,109,102),(90,117,107,127,110,97)], [(1,129,16,86),(2,128,17,85),(3,127,18,90),(4,132,13,89),(5,131,14,88),(6,130,15,87),(7,53,125,43),(8,52,126,48),(9,51,121,47),(10,50,122,46),(11,49,123,45),(12,54,124,44),(19,81,30,76),(20,80,25,75),(21,79,26,74),(22,84,27,73),(23,83,28,78),(24,82,29,77),(31,104,38,100),(32,103,39,99),(33,108,40,98),(34,107,41,97),(35,106,42,102),(36,105,37,101),(55,116,64,109),(56,115,65,114),(57,120,66,113),(58,119,61,112),(59,118,62,111),(60,117,63,110),(67,140,96,136),(68,139,91,135),(69,144,92,134),(70,143,93,133),(71,142,94,138),(72,141,95,137)], [(1,43,4,46),(2,44,5,47),(3,45,6,48),(7,132,10,129),(8,127,11,130),(9,128,12,131),(13,50,16,53),(14,51,17,54),(15,52,18,49),(19,117,22,120),(20,118,23,115),(21,119,24,116),(25,111,28,114),(26,112,29,109),(27,113,30,110),(31,70,34,67),(32,71,35,68),(33,72,36,69),(37,92,40,95),(38,93,41,96),(39,94,42,91),(55,74,58,77),(56,75,59,78),(57,76,60,73),(61,82,64,79),(62,83,65,80),(63,84,66,81),(85,124,88,121),(86,125,89,122),(87,126,90,123),(97,136,100,133),(98,137,101,134),(99,138,102,135),(103,142,106,139),(104,143,107,140),(105,144,108,141)], [(7,10),(8,11),(9,12),(19,22),(20,23),(21,24),(25,28),(26,29),(27,30),(43,53),(44,54),(45,49),(46,50),(47,51),(48,52),(67,96),(68,91),(69,92),(70,93),(71,94),(72,95),(73,84),(74,79),(75,80),(76,81),(77,82),(78,83),(85,131),(86,132),(87,127),(88,128),(89,129),(90,130),(97,104),(98,105),(99,106),(100,107),(101,108),(102,103),(109,119),(110,120),(111,115),(112,116),(113,117),(114,118),(121,124),(122,125),(123,126),(133,136),(134,137),(135,138),(139,142),(140,143),(141,144)]])

54 conjugacy classes

class 1 2A2B2C2D3A3B3C3D4A4B4C4D4E4F4G4H4I6A···6L6M···6T12A···12P
order1222233334444444446···66···612···12
size1111422222241818181836362···24···44···4

54 irreducible representations

dim111111222224
type+++++++++-
imageC1C2C2C2C2C2S3D6D6C4○D4C4○D12D42S3
kernelC62.223C23C4×C3⋊Dic3C6.Dic6C12⋊Dic3C625C4C32×C22⋊C4C3×C22⋊C4C2×C12C22×C6C3×C6C6C6
# reps1121214846168

Matrix representation of C62.223C23 in GL6(𝔽13)

1000000
040000
0012000
0001200
0000100
000044
,
300000
090000
0012000
0001200
000010
000001
,
010000
100000
008000
000800
0000128
000001
,
800000
080000
00121200
002100
000080
000008
,
100000
0120000
001100
0001200
000010
00001012

G:=sub<GL(6,GF(13))| [10,0,0,0,0,0,0,4,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,10,4,0,0,0,0,0,4],[3,0,0,0,0,0,0,9,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,12,0,0,0,0,0,8,1],[8,0,0,0,0,0,0,8,0,0,0,0,0,0,12,2,0,0,0,0,12,1,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,1,12,0,0,0,0,0,0,1,10,0,0,0,0,0,12] >;

C62.223C23 in GAP, Magma, Sage, TeX

C_6^2._{223}C_2^3
% in TeX

G:=Group("C6^2.223C2^3");
// GroupNames label

G:=SmallGroup(288,736);
// by ID

G=gap.SmallGroup(288,736);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,64,590,219,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^6=e^2=1,c^2=b^3,d^2=a^3,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=a^3*b^3*c,e*d*e=b^3*d>;
// generators/relations

׿
×
𝔽